Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhao-Di Liu,^a Min-Yu Tan^b and Hai-Liang Zhu^a*

^aDepartment of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and ^bDepartment of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: hailiang_zhu@163.com

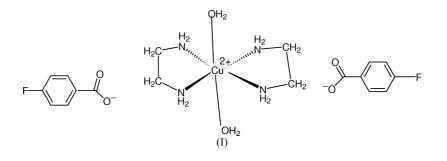
Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.009 Å R factor = 0.057 wR factor = 0.181 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved


Diaquabis(ethylenediamine- $\kappa^2 N, N'$)copper(II) bis(4-fluorobenzoate)

The title compound, $[Cu(C_2H_8N_2)(H_2O)_2](C_7H_4FO_2)_2$, is a mononuclear complex. The Cu^{II} atom, which lies on a crystallographic inversion centre, is coordinated by four N atoms from two ethylenediamine ligands and two O atoms from two water molecules, to form a slightly distorted octahedral geometry. All the N atoms of the ethylenediamine ligands, and all the O atoms in the water molecules and 4-fluorobenzoate anions, contribute to the formation of a hydrogen-bonded three-dimensional network.

Received 24 June 2004 Accepted 2 July 2004 Online 9 July 2004

Comment

Amine complexes with transition metal carboxylates represent an important branch in the field of coordination chemistry. Previously, we have reported the crystal structures of some of these complexes (Zhu *et al.*, 1998, 1999, 2001, 2002; Zhu, Shao *et al.*, 2003; Zhu, Liu & Liu, 2003). As an extension of this work, we report here the title copper(II) complex, (I).

The asymmetric unit of (I) consists of one-half of the $[Cu(C_2N_2H_8)(H_2O)_2]^{2+}$ complex cation and an organic anion. The other half of the cation is generated by a crystallographic inversion centre. The Cu^{II} atom, which lies on the inversion centre, has a slightly distorted octahedral geometry. Two water molecules coordinate to the Cu^{II} atom in the axial positions, while four amino N atoms from two ethylenediamine ligands occupy the equatorial positions (Fig. 1). The Cu–N distances of 2.018 (4) and 2.021 (4) Å show normal values. In similar complexes, the Cu–N bond lengths lie in the range 2.00–2.05 Å (Li *et al.*, 1999; Procter *et al.*, 1968). The Cu–O_{water} distance of 2.579 (4) Å is appreciably longer than for other copper(II) complexes with water (Amirov *et al.*, 2003).

 $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds (Fig. 2) link the complex cations and anions of (I) into a three-dimensional network.

Experimental

A solution of NH₂(CH₂)₂NH₂·H₂O (1:5, ν/ν , 10 ml) containing copper(II) 4-fluorobenzoate tetrahydrate (1 mmol, 0.34 g) was stirred for 30 min in air, and then placed in a Parr Teflon-lined stainless steel vessel (18 ml). The vessel was sealed and heated at 433 K for 12 h, cooled to 373 K at a rate of 8 K h⁻¹, held at that temperature for 10 h and then cooled to room temperature to obtain violet crystals of (I). The crystals were isolated, washed with water and dried *in vacuo* using CaCl₂ (yield 56.6%). Analysis found: C 43.39, H 5.74, N 11.30, O 19.34, F, 7.56%; calculated for C₁₈H₂₈CuF₂N₄O₆: C 43.41, H 5.67, N 11.25, O 19.28, F 7.63%.

Z = 1

 $D_x = 1.467 \text{ Mg m}^{-3}$

Cell parameters from 2238

 $0.30\,\times\,0.20\,\times\,0.10$ mm

2238 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.067P)^2]$

+ 1.8621*P*] where $P = (F_o^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm max} = 1.74 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

2167 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

T = 293 (2) K

Block, violet

 $R_{\rm int}=0.019$

 $\theta_{\rm max} = 26.5^{\circ}$ $h = -7 \rightarrow 7$

 $k=-8\rightarrow 8$

 $l = -18 \rightarrow 18$

 $\theta = 6-28^{\circ}$ $\mu = 1.03 \text{ mm}^{-1}$

Crystal data

$$\begin{split} & [\mathrm{Cu}(\mathrm{C}_{2}\mathrm{H}_{8}\mathrm{N}_{2})(\mathrm{H}_{2}\mathrm{O})_{2}](\mathrm{C}_{7}\mathrm{H}_{4}\mathrm{FO}_{2})_{2} \\ & M_{r} = 497.98 \\ & \text{Triclinic, } P\overline{1} \\ & a = 6.131 \ (1) \ \mathring{\mathrm{A}} \\ & b = 7.144 \ (1) \ \mathring{\mathrm{A}} \\ & c = 14.498 \ (3) \ \mathring{\mathrm{A}} \\ & \alpha = 95.72 \ (3)^{\circ} \\ & \beta = 96.37 \ (3)^{\circ} \\ & \gamma = 115.15 \ (3)^{\circ} \\ & V = 563.6 \ (2) \ \mathring{\mathrm{A}}^{3} \end{split}$$

Data collection

Siemens SMART CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.748, T_{\max} = 0.904$ 4314 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.181$ S = 1.182238 reflections 148 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

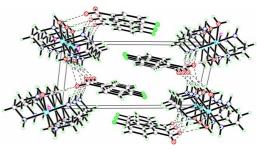
Selected geometric parameters (Å, °).

2.018 (4)	Cu1 - O1W	2.579 (4)
2.021 (4)		
180	$N1^{i}$ -Cu1-O1W	87.24 (14)
84.95 (17)	N1-Cu1-O1W	92.76 (14)
95.05 (17)	N2-Cu1-O1W	91.01 (15)
180	$N2^{i}-Cu1-O1W$	88.99 (15)
	2.021 (4) 180 84.95 (17) 95.05 (17)	$\begin{array}{ccc} 2.021 & (4) \\ 180 & N1^{i}-Cu1-O1W \\ 84.95 & (17) & N1-Cu1-O1W \\ 95.05 & (17) & N2-Cu1-O1W \end{array}$


Symmetry code: (i) -x, -y, -z.

Table 2

Hydrogen-bonding geometry (Å, °).


$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1−H1 <i>B</i> ····O1	0.90	2.18	3.049 (6)	161
$N1 - H1D \cdots O1W^{i}$	0.90	2.17	3.057 (6)	169
$N2-H2C\cdots O1^{ii}$	0.90	2.29	3.079 (6)	147
$N2-H2D\cdots O2^{iii}$	0.90	2.13	2.990 (6)	161
O1W−H1WA···O1 ⁱⁱⁱ	0.837 (10)	1.936 (15)	2.766 (5)	171 (6)
$O1W-H1WB\cdots O2$	0.836 (10)	1.973 (19)	2.778 (5)	161 (5)

Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, 1 - y, -z; (iii) -x, 1 - y, -z.

The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme for the contents of the asymmetric unit.

The crystal packing of (I), with the N-H···N and O-H···N hydrogenbonding interactions shown as dashed lines.

The H atoms of the water molecules were located in a difference Fourier map and refined isotropically, with the O–H and H···H distances restrained to 0.84 (1) and 1.37 (2) Å, respectively. The other H atoms were placed in geometrically idealized positions, with N– H = 0.90 Å and C–H = 0.96 Å, and allowed to ride on their parent atoms, with $U_{\rm iso}({\rm H}) = 0.08$ Å². A large residual peak of 1.74 e Å⁻³ was observed 1.74 and 1.85 Å from atoms Cu1 and N1, respectively, but it does not make sense chemically or geometrically. Some minor non-merohedral twinning is observed as there is a consistent trend with $F_o^2 \gg F_c^2$, but we were unable to establish the twin law.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1996); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004kj300zd.

References

- Amirov, R. R., Litvinov, I. A. Gubaidullin, A. T. & Matyugicheva, U. V. (2003). *Russ. J. Gen. Chem.* 73, 1860–1865.
- Li, B.-L., Xu, S., Gao, B.-L., Zhu, L.-M. & Yu, K.-B. (1999). Transition Met. Chem. 24, 622–627.
- Procter, I. M., Hathaway, B. J. & Nicholls, P. (1968). J. Chem. Soc. A, pp. 1678– 1682.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version. 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Zhu, H.-L., Liu, Q.-X. & Liu, X. (2003). Z. Kristallogr. New Cryst. Struct. 218, 259–260.
- Zhu, H.-L., Ren, C.-X. & Chen, X.-M. (2002). J. Coord. Chem. 55, 667–673.
- Zhu, H.-L., Shao S.-C., Ma, J.-L., Qiu, X.-Y., Yang, S. & Sun, L. (2003). Z. Kristallogr. New Cryst. Struct. 218, 503–505.
- Zhu, H.-L., Tong, Y.-X., Chen, X.-M. & Ren, C.-X. (2001). Transition Met. Chem. 26, 528–531.
- Zhu, H.-L., Zheng, L.-M., Fu, D.-G., Huang, P., Bu, W.-M. & Tang, W.-X. (1999). Inorg. Chim. Acta, 287, 52–60.
- Zhu, H.-L., Zheng, L.-M., Fu, D.-G., Huang, X.-Y., Wu, M.-F. & Tang, W.-X. (1998). J. Inorg. Biochem. 70, 211–218.